首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2391篇
  免费   300篇
  国内免费   147篇
化学   320篇
晶体学   12篇
力学   1151篇
综合类   21篇
数学   661篇
物理学   673篇
  2023年   17篇
  2022年   30篇
  2021年   36篇
  2020年   76篇
  2019年   40篇
  2018年   59篇
  2017年   55篇
  2016年   66篇
  2015年   59篇
  2014年   102篇
  2013年   145篇
  2012年   102篇
  2011年   121篇
  2010年   81篇
  2009年   103篇
  2008年   134篇
  2007年   174篇
  2006年   144篇
  2005年   115篇
  2004年   132篇
  2003年   110篇
  2002年   103篇
  2001年   97篇
  2000年   91篇
  1999年   77篇
  1998年   69篇
  1997年   96篇
  1996年   51篇
  1995年   50篇
  1994年   39篇
  1993年   31篇
  1992年   44篇
  1991年   39篇
  1990年   29篇
  1989年   18篇
  1988年   18篇
  1987年   15篇
  1986年   10篇
  1985年   11篇
  1984年   8篇
  1983年   5篇
  1982年   6篇
  1981年   2篇
  1980年   5篇
  1979年   7篇
  1978年   6篇
  1977年   4篇
  1974年   2篇
  1957年   1篇
  1936年   1篇
排序方式: 共有2838条查询结果,搜索用时 93 毫秒
1.
Erosion and sediments transport processes have a great impact on industrial structures and on water quality. Despite its limitations, the Saint‐Venant‐Exner system is still (and for sure for some years) widely used in industrial codes to model the bedload sediment transport. In practice, its numerical resolution is mostly handled by a splitting technique that allows a weak coupling between hydraulic and morphodynamic distinct softwares but may suffer from important stability issues. In recent works, many authors proposed alternative methods based on a strong coupling that cure this problem but are not so trivial to implement in an industrial context. In this work, we then pursue 2 objectives. First, we propose a very simple scheme based on an approximate Riemann solver, respecting the strong coupling framework, and we demonstrate its stability and accuracy through a number of numerical test cases. However, second, we reinterpret our scheme as a splitting technique and we extend the purpose to propose what should be the minimal coupling that ensures the stability of the global numerical process in industrial codes, at least, when dealing with collocated finite volume method. The resulting splitting method is, up to our knowledge, the only one for which stability properties are fully demonstrated.  相似文献   
2.
Experiments were carried out to observe the effect of a magnetic field and grid biasing voltage in presence of a plasma bubble in a magnetized, filamentary discharge plasma system. A spherical mesh grid of 80% optical transparency was negatively biased and introduced into the plasma for creating a plasma bubble. Diagnostics via an electrical Langmuir probe and a hot emissive probe were extensively used for scanning the plasma bubble. Plasma floating potential fluctuations were measured at three different positions of the plasma bubble. The instability in the pattern showed the dynamic transition from periodic to chaotic for increasing magnetic fields. Time scale analysis using continuous wavelet transform was carried out to identify the presence of non‐linearity from the contour plots. The mechanisms of the low‐frequency instabilities along with the transition to chaos could be qualitatively explained. Non‐linear techniques such as fast Fourier transform, phase space plot, and recurrence plot were used to explore the dynamics of the system appearing during plasma fluctuations. In order to demonstrate the observed chaotic phenomena in this study, characteristics of chaos such as the Lyapunov exponent were obtained from experimental time series data. The experimentally observed potential structure is confirmed with numerical analysis based on fluid hydrodynamics.  相似文献   
3.
In this paper, the finite element method with new spherical Hankel shape functions is developed for simulating 2‐dimensional incompressible viscous fluid problems. In order to approximate the hydrodynamic variables, the finite element method based on new shape functions is reformulated. The governing equations are the Navier‐Stokes equations solved by the finite element method with the classic Lagrange and spherical Hankel shape functions. The new shape functions are derived using the first and second kinds of Bessel functions. In addition, these functions have properties such as piecewise continuity. For the enrichment of Hankel radial basis functions, polynomial terms are added to the functional expansion that only employs spherical Hankel radial basis functions in the approximation. In addition, the participation of spherical Bessel function fields has enhanced the robustness and efficiency of the interpolation. To demonstrate the efficiency and accuracy of these shape functions, 4 benchmark tests in fluid mechanics are considered. Then, the present model results are compared with the classic finite element results and available analytical and numerical solutions. The results show that the proposed method, even with less number of elements, is more accurate than the classic finite element method.  相似文献   
4.
5.
Phase-resolved information is necessary for many coastal wave problems, for example, for the wave conditions in the vicinity of harbor structures. Two-dimensional (2D) depth-averaging shallow water models are commonly used to obtain a phase-resolved solution near the coast. These models are in general more computationally effective compared with computational fluid dynamics software and will be even more capable if equipped with a parallelized code. In the current article, a 2D wave model solving the depth-averaged continuity equation and the Euler equations is implemented in the open-source hydrodynamic code REEF3D. The model is based on a nonhydrostatic extension and a quadratic vertical pressure profile assumption, which provides a better approximation of the frequency dispersion. It is the first model of its kind to employ high-order discretization schemes and to be fully parallelized following the domain decomposition strategy. Wave generation and absorption are achieved with a relaxation method. The simulations of nonlinear long wave propagations and transformations over nonconstant bathymetries are presented. The results are compared with benchmark wave propagation cases. A large-scale wave propagation simulation over realistic irregular topography is shown to demonstrate the model's capability of solving operational large-scale problems.  相似文献   
6.
A unique trend in the binding affinity between cationic metal−organic cages (MOCs) and external counteranions in aqueous media was observed. Similar to many macroions, two MOCs, sharing similar structures but carrying different number of charges, self-assembled into hollow spherical single-layered blackberry-type structures through counterion-mediated attraction. Dynamic and static light scattering and isothermal titration calorimetry measurements confirm the stronger interactions among less charged MOCs and counteranions than that of highly charged MOCs, leading to larger assembly sizes. DOSY NMR measurements suggest the significance of thick hydration shells of highly charged MOCs, inhibiting the MOC-counterion binding and weakening the interaction between them. This study demonstrates that the greater role played by hydration shell on ion-pair formation comparing with charge density of MOCs.  相似文献   
7.
8.
Laminar flame speed (LFS) is one of the most important physicochemical properties of a combustible mixture. At normal and elevated temperatures and pressures, LFS can be measured using propagating spherical flames in a closed chamber. LFS is also used in certain turbulent premixed flame modelling for combustion in spark ignition engines. Inside the closed chamber or engine, transient pressure rise occurs during the premixed flame propagation. The effects of pressure rise rate (PRR) on LFS are examined numerically in this study. One-dimensional simulations are conducted for spherical flame propagation in a closed chamber. Detailed chemistry and transport are considered. Different values of PRR at the same temperature and pressure are achieved through changing the spherical chamber size. It is found that the effect of PRR on LFS is negligible under the normal and engine-relevant conditions considered in this study. This observation is then explained through the comparison between the unsteady and convection terms in the energy equation for a premixed flame.  相似文献   
9.
A novel, green and effective approach to fabricate uniform functional spherical polymer particles remains a huge challenge. Herein, we present a novel one-pot approach superior to traditional precipitation polymerization, called precipitated droplets in-situ cross-linking (PDIC) polymerization, by which uniform particles are fabricated on large scale without any toxic organic solvents or stabilizers. With this approach, functional spherical polymer particles can be fabricated continuously only relying on gravity, and the preparation process is thus super-fast. For example, polyacrylic acid (PAA) hydrogel particles with ultra-high adsorption capacity are fabricated within only 60 s. Moreover, we have successfully fabricated different functional hydrogel particles, including anticoagulant, reinforced and bactericidal particles, based on the monomers of 2-acrylamide-2-methylpropanesulfonic acid (AMPS), acrylamide (AM) and [2-(methacryloyloxy)ethyl]trimethylammonium chloride (DMC), respectively. This approach has several advantages: (i) the technology is green; (ii) the size and porosity of the particles can be well-controlled; (iii) various functional spherical hydrogel particles can be fabricated by using corresponding monomers. More importantly, this approach fits the commercialization of functional hydrogel particles on demand.  相似文献   
10.
Boronic acid functionalized materials have gained much attention in both chemistry and biology fields due to their multivalent covalent interactions with cis-diol containing (macro) molecules. The remarkable progress in this field has resulted in the development of their biomedical applications, such as, biosensors and nanocarriers. In this study, the spherical nanoparticles consisting of glycerol and 2,5-thiophenediylbisboronic acid were synthesized by one-pot ring opening copolymerization of a mixture of glycidol and 2,5-thiophenediylbisboronic acid. The synthesized nanoparticles were used for the modification of the glassy carbon electrode and the determination of Guaifenesin. The synthesized polymeric nanoparticles were characterized by different spectroscopic and microscopic methods including UV–vis, IR, NMR, DLS, and SEM. Additionally, the electrochemical behavior of the fabricated electrode toward Guaifenesin was investigated with cyclic voltammetry and electrochemical impedance spectroscopy.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号